成对图像和文本的大型数据集越来越受到愿景和愿景和语言任务的通用表示。此类数据集已通过查询搜索引擎或收集HTML Alt-Text构建 - 由于Web数据是嘈杂的,因此它们需要复杂的过滤管道来维护质量。我们探索备用数据源以收集具有最小滤波的高质量数据。我们介绍Redcaps - 从Reddit收集的12M图像文本对的大规模数据集。来自Reddit的图像和标题描绘并描述了各种各样的物体和场景。我们从手动策划的FuSoddits集中收集数据,这为粗略图像标签提供给粗略图像标签,并允许我们转向数据集组合而不标记单个实例。我们展示Redcaps培训的标题模型产生了人类优选的丰富和各种标题,并学习转移到许多下游任务的视觉表现。
translated by 谷歌翻译
This paper presents a comprehensive survey of low-light image and video enhancement. We begin with the challenging mixed over-/under-exposed images, which are under-performed by existing methods. To this end, we propose two variants of the SICE dataset named SICE_Grad and SICE_Mix. Next, we introduce Night Wenzhou, a large-scale, high-resolution video dataset, to address the issue of the lack of a low-light video dataset that discount the use of low-light image enhancement (LLIE) to videos. The Night Wenzhou dataset is challenging since it consists of fast-moving aerial scenes and streetscapes with varying illuminations and degradation. We conduct extensive key technique analysis and experimental comparisons for representative LLIE approaches using these newly proposed datasets and the current benchmark datasets. Finally, we address unresolved issues and propose future research topics for the LLIE community.
translated by 谷歌翻译
We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.
translated by 谷歌翻译
Recent advances in deep learning research, such as transformers, have bolstered the ability for automated agents to generate creative texts similar to those that a human would write. By default, transformer decoders can only generate new text with respect to previously generated text. The output distribution of candidate tokens at any position is conditioned on previously selected tokens using a self-attention mechanism to emulate the property of autoregression. This is inherently limiting for tasks such as controllable story generation where it may be necessary to condition on future plot events when writing a story. In this work, we propose Future Sight, a method for finetuning a pretrained generative transformer on the task of future conditioning. Transformer decoders are typically pretrained on the task of completing a context, one token at a time, by means of self-attention. Future Sight additionally enables a decoder to attend to an encoded future plot event. This motivates the decoder to expand on the context in a way that logically concludes with the provided future. During inference, the future plot event can be written by a human author to steer the narrative being generated in a certain direction. We evaluate the efficacy of our approach on a story generation task with human evaluators.
translated by 谷歌翻译
Transformer-based models have gained large popularity and demonstrated promising results in long-term time-series forecasting in recent years. In addition to learning attention in time domain, recent works also explore learning attention in frequency domains (e.g., Fourier domain, wavelet domain), given that seasonal patterns can be better captured in these domains. In this work, we seek to understand the relationships between attention models in different time and frequency domains. Theoretically, we show that attention models in different domains are equivalent under linear conditions (i.e., linear kernel to attention scores). Empirically, we analyze how attention models of different domains show different behaviors through various synthetic experiments with seasonality, trend and noise, with emphasis on the role of softmax operation therein. Both these theoretical and empirical analyses motivate us to propose a new method: TDformer (Trend Decomposition Transformer), that first applies seasonal-trend decomposition, and then additively combines an MLP which predicts the trend component with Fourier attention which predicts the seasonal component to obtain the final prediction. Extensive experiments on benchmark time-series forecasting datasets demonstrate that TDformer achieves state-of-the-art performance against existing attention-based models.
translated by 谷歌翻译
Boundary conditions (BCs) are important groups of physics-enforced constraints that are necessary for solutions of Partial Differential Equations (PDEs) to satisfy at specific spatial locations. These constraints carry important physical meaning, and guarantee the existence and the uniqueness of the PDE solution. Current neural-network based approaches that aim to solve PDEs rely only on training data to help the model learn BCs implicitly. There is no guarantee of BC satisfaction by these models during evaluation. In this work, we propose Boundary enforcing Operator Network (BOON) that enables the BC satisfaction of neural operators by making structural changes to the operator kernel. We provide our refinement procedure, and demonstrate the satisfaction of physics-based BCs, e.g. Dirichlet, Neumann, and periodic by the solutions obtained by BOON. Numerical experiments based on multiple PDEs with a wide variety of applications indicate that the proposed approach ensures satisfaction of BCs, and leads to more accurate solutions over the entire domain. The proposed correction method exhibits a (2X-20X) improvement over a given operator model in relative $L^2$ error (0.000084 relative $L^2$ error for Burgers' equation).
translated by 谷歌翻译
Training a neural network requires choosing a suitable learning rate, involving a trade-off between speed and effectiveness of convergence. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate $\eta^{\ast}$ - the largest learning rate at which a randomly initialized neural network can successfully begin training and achieve (at least) a given threshold accuracy. Using a simple approach to estimate $\eta^{\ast}$, we observe that in constant-width fully-connected ReLU networks, $\eta^{\ast}$ demonstrates different behavior to the maximum learning rate later in training. Specifically, we find that $\eta^{\ast}$ is well predicted as a power of $(\text{depth} \times \text{width})$, provided that (i) the width of the network is sufficiently large compared to the depth, and (ii) the input layer of the network is trained at a relatively small learning rate. We further analyze the relationship between $\eta^{\ast}$ and the sharpness $\lambda_{1}$ of the network at initialization, indicating that they are closely though not inversely related. We formally prove bounds for $\lambda_{1}$ in terms of $(\text{depth} \times \text{width})$ that align with our empirical results.
translated by 谷歌翻译
We introduce OPEND, a benchmark for learning how to use a hand to open cabinet doors or drawers in a photo-realistic and physics-reliable simulation environment driven by language instruction. To solve the task, we propose a multi-step planner composed of a deep neural network and rule-base controllers. The network is utilized to capture spatial relationships from images and understand semantic meaning from language instructions. Controllers efficiently execute the plan based on the spatial and semantic understanding. We evaluate our system by measuring its zero-shot performance in test data set. Experimental results demonstrate the effectiveness of decision planning by our multi-step planner for different hands, while suggesting that there is significant room for developing better models to address the challenge brought by language understanding, spatial reasoning, and long-term manipulation. We will release OPEND and host challenges to promote future research in this area.
translated by 谷歌翻译
Determining accurate bird's eye view (BEV) positions of objects and tracks in a scene is vital for various perception tasks including object interactions mapping, scenario extraction etc., however, the level of supervision required to accomplish that is extremely challenging to procure. We propose a light-weight, weakly supervised method to estimate 3D position of objects by jointly learning to regress the 2D object detections and scene's depth prediction in a single feed-forward pass of a network. Our proposed method extends a center-point based single-shot object detector \cite{zhou2019objects}, and introduces a novel object representation where each object is modeled as a BEV point spatio-temporally, without the need of any 3D or BEV annotations for training and LiDAR data at query time. The approach leverages readily available 2D object supervision along with LiDAR point clouds (used only during training) to jointly train a single network, that learns to predict 2D object detection alongside the whole scene's depth, to spatio-temporally model object tracks as points in BEV. The proposed method is computationally over $\sim$10x efficient compared to recent SOTA approaches [1, 38] while achieving comparable accuracies on KITTI tracking benchmark.
translated by 谷歌翻译
Household environments are visually diverse. Embodied agents performing Vision-and-Language Navigation (VLN) in the wild must be able to handle this diversity, while also following arbitrary language instructions. Recently, Vision-Language models like CLIP have shown great performance on the task of zero-shot object recognition. In this work, we ask if these models are also capable of zero-shot language grounding. In particular, we utilize CLIP to tackle the novel problem of zero-shot VLN using natural language referring expressions that describe target objects, in contrast to past work that used simple language templates describing object classes. We examine CLIP's capability in making sequential navigational decisions without any dataset-specific finetuning, and study how it influences the path that an agent takes. Our results on the coarse-grained instruction following task of REVERIE demonstrate the navigational capability of CLIP, surpassing the supervised baseline in terms of both success rate (SR) and success weighted by path length (SPL). More importantly, we quantitatively show that our CLIP-based zero-shot approach generalizes better to show consistent performance across environments when compared to SOTA, fully supervised learning approaches when evaluated via Relative Change in Success (RCS).
translated by 谷歌翻译